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. rigid structures are not conservative compared to time history responses.

In a Response Spectra Modal Analysis, phasing relationships among the

f?i A typical earthquake acceleration response spectrum is shown in Figure 1.
various natural modes of vibration are not determined. Only the peak he spectrum shows that for high frequencies, the acceleration response

response of each mode is determined. Since all modes may not peak at the sane -becomes constant. This constant is known as the zero period acceleration,

time, the maximum response of the structure must be approximated by a “IPA, and is equal to the peak base acceleration. The spectrum frequency where

combination of the peak modal responses. “the response 1s first considered constant fs known as the cut-off frequency.

The most common method used to combine the peak modal responses is by pdes with frequencies above the cut-off frequency are considered rigid.

square root of the sum of the squares, SRSS. Closely spaced modes, (modes 5des below the cut-off frequency are flexible.

with frequencies within ten percent of each other), are combined abso1ute1yé ;l’The modified response summation being proposed by this paper utilizes a

and included as a single term in the SRSS sunmation. This method is tatic analysis based on zero period acceleration. The structural response

statistically valid if each of the responses pezks randomly in time. The “represented by the static analysis is indicated by the dashed area in Figure

responses of rigid modes violate this criterion because they all tend to pea

f; The static analysis, in effect, applies the peak base acceleration to

at the time that the base excitation peaks. vgéy mode of the structure. The remaining structural response results from

Investigations by Gwinn and Waal (3) show that SRSS responses of near]y .tﬁé unused part of the flexible responses.

' The MRS combination rule is given by
Biswas and Duff (2) further demonstrate that SRSS responses close to support: -

. . '
points are lower than time history responses. The modified response = [R% + ( RZ)]‘/‘ (1)
: * IRg
summation, MRS, presented in this paper improves the SRSS approximation by :
: where:
allowing for simultaneous rigid response. e

B f‘,= the total response of the structure,
A second approximation s introduced by Response Spectra Modal Ana1ysi§ :

- ng the response of the structure to a static analysis based on ZPA
if all natural modes of vibration are not included in the summation. The D

" acceleration
costs of processing mode shapes can be reduced if only "significant” modes a:f :

e ‘R4 = the dynamic response of a flexible mode based on the square
included in the summation. However, no widely accepted method for determinigg. S

root of the difference between the response spectra acceleration,

the significance of a mode has been established. The choice of modes is left

Fa

. squared, and the ZPA acceleration, squared;
to the engineer's discretion. In the modified response summation, only

i ;~1:= the number of flexible modes.
flexible modes need be included in the summation. The SRSS approximation is . e

The first term of equation (1) represents the peak response due to absolute
improved by reducing the possibility of overlooking significant modes. e e (1) rep P P

. 2cceleration of the base. The second term approximates peak responses of

8-2-2 8-2-3
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flexible modes due to accelerations relative to the base. Sinca the absolute

-and 'relative accelerations need not peak simultaneously, an SRSS combinatfon

1s used in equation (1).

simple static analysis. This complies with the normal method used for
aﬁhlyzing rigid equipment. In the limiting case of a single flexible mode,
;sugtfdn (1) becomes equivalent to the normal dynamic response of a single

Vﬁbdg.-fThe use of equation (1) insures that a Response Spectra Analysis will

ilwéys be more conservative than a ZPA statfc analysis.

The mathematical development of the MRS method is presented in the

fdllbwing sections. The development is presented for systems with no viscous

dambjng in order to simplify the analysis. Since an undamped system 1s the

o P e Tk AT T

liniting case of a 1ightly damped system, the modal response summing rule

‘/’/;"//' \L_\ gp ch applies to the undamped system should also apply to systems with common-
ZpA_7--,-ﬂ__,_-f_?,;Ef:__,__r_r_,_-r_ SR S N | N 1y y;ed values of damping, usually less than ten percent of critical. E
NNl EEy A rNNIE N {, ~ The first step of the mathematical development is a review of the E
i ’1 M ] H Y ’ 'I T / 7 " B ” K i renvi SRR 171 Lo E
;;; / o — v e ,' pa ,, f I' f / '/ f e ! b calculatfon of response spectra accelerations from single-degree-of-freedom :
) S W A A A A B B A A A T A A A I Y : .
: f Systems. It {s shown that the response spectra acceleration can be considered

| 5 10 15 30| 4050

Zotf
eutott) the 'sum of a "rigid" response equal to the base excitation acceleration and

Frequency in Hertz
FIG. I.— Typical Broadened Acceleration Response
Spectra.

an approximate "dynamic" response. N
‘. The next step of the development is a review of a multi-degree-of-freedom

§¥Stem response. The normal solution method is presented and then modified to
"bPOduce the MRS summation rule. Modal responses are divided into flexible and
:‘Qid groupings. Using the results of the single-degree-of-freedom
vaeve1opment; the rigid grouping of modal responses are shown to reduce to a
ﬁ‘mblg static analysis. The remaining flexible modal responses are determined

'P51ﬂ9 normal formulation with reduced response accelerations.

8-2-5
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Results from sample problems are presented following the mathematical:
development. Both SRSS responses and MRS responses are compared to the timgf

history response. o

RESPONSE SPECTRA FORMULATION
The response spectra value for a given frequency is equal to the maximur
response to base excitation of a single degree of freedom system with a

natural frequency equal to the given frequency. Figure 2 illustrates a

single-degree-of-freedom system with a fluctuating base displacement, b(t).;y?

relative displacement of the mass with respect to the base 1s given by x{t).
For each instant of time, the spring force must equal the inertia force;

that fis, BN

-kx(t) = m{x"(t) + b"(t)]

or, rearranging terms,

mx"(t) + kx(t) = -mb"(t)

where:

x"(t) = relative acceleration of the mass, and

b"(t) = acceleration of the base.

The base acceleration, b(t), can be represented over a finite interval

of time by a Fourier series as

b"(t) = a, + a, cos(yt - ¢,) + a, cos(u,t = ¢,) <ot cos(wit ~ 1)
where:
wi = § x (the fundamental frequency of the time interval), and

aj, ¢4 = the Fourfer coefficients and phase angles of b(t}.

8-2-6
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FIG. 2.— Single - Degree - Of-Freedom Oscillator
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The steady state solution of equations (3) and (4) for a system initially: {--. The acceleration response, A(t), of the single-degree-of-freedom mass
at rest i{s given by 'lig given by the sum of the relative acceleration, x"(t) and the base

éécé]eration, b*(t). Dividing equation (2) by m gives

a. a. coclum,t « 4;) a, coslmat « 4'\2) 2, coslm:t - 4.)
x(t)= = — -;-\ ‘2 — - 2 - ‘z vee = — Z ! 3 !
- - )
R, (o - w) (o7 = wp) {u, - 03 Alt) = o x(t). (10)

where: . *- The undamped acceleration response spectrum value at wy is the maximum

oy = the natural frequency of the single-degree-of-freedom system, (k/m)l/z-f;i * absolute value of A{t). Utilizing equations (7), (8), and {9), equation (10)
can be written as

The "rigid" formulation of equation (3) is given by

CA(t) = Ag(t) + Aylt) (11)

ke (t) = -mb"(t). '? (5)’{ where:

: As(t) = b"(t)» and

ol (12)
After substituting equation (4) for b"{t)-and ”ﬁ for k/m, equation {6) bec?m{ﬁi_ ,
] A i © o
. fAd(t) = a, cos(ut - ¢,) —_E_—L_5-°°' + e cos(wit - ¢i) ?_?__1_73. (13)
. : . w - W -W
: ay a, cosf{uyt - &) a; cos (0t - ¢4) (" n - Ul no %4
x(t) = - % - Z . " ; .
W w w
n n

Since earthquake excitation is dominated by low frequency components,
) Ad(t) becomes small as w, becomes large. An acceleration response spectra
:'bgcomes constant above the cut-off frequency because, for rigid frequencies,
,fﬁé peak value of A4(t) is negligible compared to the peak value of Ag(t).
and a "dynamic” response, x4(t), as Since Ag(t) and A4(t) each vary randomly in time, their respective

c-maximum values are not likely to occur simultaneously. The maximum magnitude

x(t) = xs(t) + xd(t), (gl leOf Ag(t) 1s given by the ZPA of an acceleration response spectrum. The value
. l,bf the -acceleration response spectrum represents the maximum magnitude of
where: 2 ?'A(t). (A{t), maximum). Assuming that A(t), maximum is approximated by an SRSS
xd(t) = - 2 cosiwlt - &) ( 3 2 2) e ™ 1 COS(:it - ¢1) i.EOmb1nation of As(t), maximum and A4(t), maximum, then an expression for the

“n “n -Bm; o “n maximum magnitude of Ag(t) is given by

8-2-9
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Ag(t), maximum = [(A(t), maximum)? - (ZPA)?)'/2. x(t)} = % ) } }q(t)} (18)
) nxl nxn) (nx1)
For rigid modes, A(t), max mum, is equal to the ZPA, and A4(t), maximum 1sf '

equal to zero. Equatfons (11), (12), and (14) will be used for development of - [:6 ] = a matrix composed of n orthogonal efgenvectors of expression (15),

multi-degree-of-freedom systems in the following sections. [¢]T=[ ¢ ], transpose, and
(ﬁ(t)} = generalized relative deflections.
MULTI-DEGREE OF FREEDOM RESPONSE

Equation (3), written in matrix form for an n degree-of-freedom-system; 3 %ﬁubstituting expressions (16), (17) and (18) into expression (15) yfields

is : E

e ,, gyt | 2&?3‘ " hl By e L el 1)
}n?ﬁg {?nﬁfg} ' [ntn; i:if b= -pii) nTn (ﬁii) ,‘15) . \

where: .

" Expression (19) represents a set of n independent, single-degree-of-

[*m.] is the diagonal mass matrix, frgedom equations. Each equatfon in expression (19) is equivalent to a

- | k] is the symmetric stiffness matrix, ' ;EfﬁgIe-degree-of—freedom system subjected to a base acceleration equal to

{x(t)} is the relative disp1acemeﬁt vector, -55“(t) multiplied by a factor, Ij. The solution to each equation for a system

b"(t) is the base acceleration, and Tfinitially at rest is

{1} is a column vector of 1's.

—_— (20)
The equations represented by expression (15) can be de-coupled by 2

premultiplying by a transposed matrix of n orthogonal eigenvectors and'making‘“

the following substitutions:

mrﬂ ) {nxn} &nxrﬂ {nxn; (16) R
Enxn} {nxn} %ntn} [ntn} (17) ¥

8-2-10 . 8-2-11

5] T [~ {1
&lx; %nxn (Axl)
. (21)
M4
w: = Kj/My, and (22)

Ai(t) = the absolute acceleration response at wj.
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" the steps that follow.

24) yields
Insertion of equation (20) into expression (18) yields that each ‘substitution of equation (20) into expression (24) yle

A (t LA, (t A (t S
xi(t) = 1 Li(—)' + 02 —“—f—) see* ®n -3“-91—) . (23) . grfl\f(t)-( gmr(t)z (25)
. W ! w w e = ® DL
’ i " §R U I e SR W B
Lr J

(nx1] ey
(2x1) (ix1)

- where:

equatfon (23) is known. Since all Aj{t) may not peak at the same time, the (Teaslt)

2
= d of the & values of TyAj(t)/
peak value of xi(t) must be approximated by some combinatfon of the terms {n: a column vector composed 0 e M(t) Wy

2
W
: f des, and
equation (23) when each term is evaluated at its maximum value. A for the flexible modes, an
ATAR(L)
i ,A;( = a column vector composed of the j values of r1A1(t)/wi
by SRSS. An inherent assumptfon of the SRSS method {is that each term in @ for the rigid modes.

equation (23) will peak randomly in time. A more refined estimate of xj(t)

can be obtained by grouping into a single term the parts of equation (23) After substituting equation (11) and noting that Ag4(t) is zero for rigid

which peak as the base excitation peaks. The new grouping can be achieved by ;.haaes_ expression (25) becomes

) “
Expression (18) is separated into flexible and rigid portions as

: Ac(t) + TfAf,4(t) reAg(t)
[x(t;} i { o redg(t) : fAfsd( . & %; : (26)
< Anx1 nx% we nxJ Yp
= q q v A
é:ﬁ;i &n:{ {(Ef(f;} ! MJ” {('J:;((f;l (ex1) (Jx1)

" where:
where: .

X (t) = " " of the absolute acceleration response
¢ = number of flexible modes, » 3 {§(t) the "rigid" value
IR B dal frequency), and
J = number of rigid modes, (j+t = n), i {independent of modal frequency)

| ¢f) = a matrix composed of the & flexible, orthogonal eigenvectors, Aﬁ;f . Apag(t) = the "dynamic" value of the absolute acceleration response for

de, (dependent on the frequency of the mode).
| ¢r] = @ matrix composed of the j, rigid orthogonal eigenvectors, each flexible mode, (dependen quency

{9¢(t)}

{qr(t)} = a vector of the j rigid, generalized deflections. . ‘:VV’T

a vector of the z flexible, generalized deflections, and

8-2-13
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Since, t+j = n, expression (26) can be expressed as of {x(t)} can also be

!:)((11: b [nxn} ; z Aste) & éf; § fA: - ) : (27)
S S

(nxl) {zx1)

Welk) e f1}6. (30)
{nxn)  {nxn} (nx1)

The coefficient of Ag(t) in equation (27) can be evaluated by the steps that g .-f
R R : (31)
1~jln } {nxn} %nxn} {nxll

(nxl)

follow. !
Using equation (20) and exbression (18), the solution for a multi-degree-

of-freedom system with an absolute acceleratfon response Ag(t) at frequency i

Substitution of expression (31) into expression (27) produces the final
can be expressed as :

resu]t that is

{x(t)} = l } 1A1(t) . £28 ry ) - (e Thf,d(t) 62
' (nxl) ‘ffilnxx &nxn} %nxn} lnxl& s(t) &nx ”i '
(ax1)

i
If a constant acceleration, G, is applied to the structure, then the absolute

Equation (32) represents a re-grouping of equation (23). The response
acceleration response at each frequency is equal to G, and equation (28)

given by the first term of equation (32) will peak as the base excitation

becomes
pes It can be considered the rigid mode of the system which vibrates
r1 - ,1?$phase with the base.
{x} = {nxn} G. (ZS)VH" j; The second term of equation (32) represents the dynamic contributions of
(nll) “be flexible modes. It has the same form as the normal solution for multi-

;dégree-of-freedom systems given by equations (20) and (23). The only
:aifferences are that only flexible modes are included in the summation, and
tﬁe response accelerations used are approximated by equation (14). Each of

' the dynamic contributions can be considered to vibrate randomly in time.

8-2-14 8-2-15
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Equation (32) has been regrouped into a form where each term vibrates
independently. An SRSS combination of the terms can be applied to approximate

the maximum system response. The resulting MRS summation method is given by

eauation (1).
Examples of the MRS method resulting from a square root sum of the

squares combination of the new grouping are presented in the following

section.
EXAMPLE, HORIZONTAL PIPE RESTRAINT
The horizontal pipe restraint shown in Figure 3 is used to demonstrate Ve O/T OIT OIT S 1)
the modified response summation method. Eight parallel pipes, each weighing j
386.4 1bf. (1719 N), are restrained by a single tapered member. The /1
éna1yt1ca1 model is presented in Figure 4. Three different models are createdn_;-ﬁi A
. by varying the stiffness, K, of the restrdint as 5000 1bf/in (876 N/mm), . -‘ 1 5 o L»O s L/O Sl IS
10 000 16/in (1752 N/m), and 20 000 1bf/in (3504 H/mm). The models are = [ b g |(_ __l Oin. l___“ypmn
referred to as 1, 2, and 3, respectively. i
The stiffness of model 2 is selected to produce an equal number of ; ::"" fexcitation)
flexible and rigid modes of vibration. Model 1 {s more flexible than model 2 <= _}_f FIG. 3.— Horizontal Pipe Restraint System Example

(lin.= 25.4mm)

while model 3 is more rigid. The natural frequencies of each model are gfven - | :

in Table 1.

Each analytical model has been subjected to the north/south component of -

the 1940 £1 Centro earthquake. A time history analysis as well as MRS and
SRSS Response Spectra Modal Analyses were performed for each model. The SRSS‘Q_‘
summation included all modes. The E1 Centro response spectra for 2 percent

critical damping was used in each response spectra analysis. Each mode in the it

time history analysis was given 2 percent critical damping by use of a dampin'él"
8-2-16
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‘ﬁairix composed of terms generated from a Caughey serfes (1). The

‘f‘facceleration response spectrum value for each frequency 1s included in Table 1.

;;?A acceleratfon for the response spectra was taken as .33 G starting at 34 Hz.
' 1yees of the three models are tabulated in Tables 2
hd 3. Acceleration responses of the pipes are given in Table 2. Axial loads
“in the bipe restraint are given in Table 3. The results of model 2 are

' jb1cdl and are plotted as fraction of time history response in Figures 5

fﬁnd\6. It should be noted that the fraction of time history acceleratfon
‘ponse at fixed points is fdentically 1 for an MRS summatfon and identically

Lfor an SRSS summation.

-t 80 in. each ot 10in, =_i
8

DISCUSSION OF THE RESULTS

~ An examination of the results shows that the MRS predictions of response

1 2 3 4
3 4 ] 2 6 2 7 L 8

8K 7K 6K 5K 4K 3K 2K K

ANNNAN
™

are, in general, comparable or better than the SRSS predictions when compared
..to time history response. Both methods predict restraint load responses
imore accurately than they predict pipe acceleration responses. The

" acceleration responses of the SRSS method prove to be more biased by fixed

FIG. 4.— Analytical Model of the Pipe Restraint System " potnts than those generated by the MRS method. The SRSS predictions for the

(lin.= 25.4 mm) p’wst flexible mode) show s1ightly better results than the MRS predictions at

fﬁoints far away from the fixed end of the restraint. As the system becomes
-_more rigid, the predictions of the SRSS method become less accurate. The

pfedictions of the MRS method show greater stability over the entire frequency

-~ PRACTICAL APPLICATIONS
The intent of the MRS method is to reduce the required computation while

Ancreasing the accuracy of modal summation predictions. The MRS method

8-2-19

8-2-18




TABLE 1.--Natural Frequencies of Models

Response Spectra Accelerations From the North/South Component of the 1940 £1 ]

Centro Earthquake

1, 2, and 3, and the Corresponding

Réstraint Models

‘-.”TABLE 2.--Peak Absolute Acceleration Response in g's at Each Node of the Pipe

Model 1 Model 2 Model 3
Mode |Frequency [Acceleration Frequenc el
y|Acceleration |F
' Number| (Hertz) (g) (Hertz) (8) fﬁggfgfy Accezgation_
1 4.6 1.13 6.6 1.41 9.3 .61
.2 10.7 .58 15.1 .46 21.4 .38
3 16.9 .42 23.9 .37 33.8 .33
4 23.2 .37 32.9 .39 46.5 .33
5 29.9 .38 42.2 .33 59.7 .33
6 36.9 .33 52.2 .33 73.8 «33
7 44,7 .33 63.1 .33 89.3 .33
8 53.8 .33 76.1 .33 107.6 .33
8-2-20

..Response Node Node | Node | Node | Node | Node | Node | Node
Method 1 2 3 4 5 6 7 8
(a) Model 1
| .636 | 777 | .982 | 1.183 | 1.397 | 1.852
0536 [ L723 | V923 [INA2T 1030 10T
| 84 | 93| _98 | 100 | 100 | 92
.591 Y EQ) L930 [ 12132 [ 10364 [ 17657
93 97 99 99 98 90
(b) Model 2
2717 .930 | 1.173 | 1.423 | 1.685 | 1.986
.629 .867 | 1.128 .41 1,738 2105
8 | 93| _96 | 99| 1031 106
v 677 .889 | 1.133 [ 1.405 [ 1.712 [ 2.060
e 94 9% 97 99 | 102 | 108
(c) Model 3
| .406 | .477_ | .581 | .625 | .713 | .840
G311 L4071 7509 .623 .7156 .932
| 77| _8 | _94 | 100 | _106_{ _111
.398 .453 »522 .604 .102 .825
98 95 96 97 98 93

8-2-21
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TABLE 3.--Peak Axial Load in Pounds at Each Spring of the Pipe Restraint

120
Models _ E
i & il.lo A
| E | T\ ==
Response Spring |Spring |Spring |Spring |Spring |Spring |Spring |Spring A =t00
Method 1 2 3 4 5 6 7 g o NS ____,_._'L--—j
T s e

(a) Model 1 < .90
Time history _| 2608 | 2541 | 2403 | 2189 | 1953 | 1656 _| 1254 | 715 ~ WYL & a0 2
SRSS 2575 7172518 {72398 Ty 21T TS T 1813 T 11en (TR - i} = /
% Time history | 93 | 99 | 100 | 101 | 100 | o7 | o5 | o93--REL. o /
RS 2863 | 72565 ~|"2316 ~| 2208 T (1934 ~| 71588 ~(1T61 |~ 5407 PN ° 30 7 o——=s MRS Method
% Time history [ 102 101 101 101 99 96 93 90> 5 / O==w<0 SRSS Method

(b) Model 2 g 80 g

/
Time histor: 3373 | 3240 | 3039 | 2762 | 2403 | 1955 | 1411 765 L 6 T 8
i % s i - i 7, T e S n 2 3 4 > odol
Sl - R il | e eesration Responss. For P
MRS 3287 ~| 73780 ~| 73009 ~|"276 282 199 1 % - | i r Pipes ;
% Time history 97 98 99 101 101 102 103 104 G| FIG. 5.— Absolute Acceleration Response Fo P i
‘ of Model 2. iy

(c) Model 3 » F
Time history | 1551 | 1456 | 1333 | 1181 | 1005 | 804 | s8s | 325 f
SRSS 1387 7| 71352 {71286 T\ 71185 T| 71048 |~ F65 T 640 |~ 360 i
% Time history | 89 | 93 | 97 | 100 | 104 | 108 | 109 | 111 4
MRS 1539 7171339 T3 TUI/g Ty T s T 589 1T 39 N
% Time history 99 99 99 100 .| 101 102 101 98 ;

Note: 1 1bf = 4,45N

8-2-23
8-2-22 :




Fraction of Time Mistory Response
a 3 ®» w B S @
o o Q 3 8 o 8

o
o

=5

@~——=8 MRS Method
Orme = =0 SRSS Method

! 2

3 4 5 & 7 8

Restraint Member of Analytical Model

FIG. 6.— Axial Lo
of Model 2.

ad Response For Restraint Members

8-2-24

" presented above can be implemented without modification of most existing,

general purpose, finite element computer codes. The need to determine the
significance of high frequency modes {s eliminated. However, if a system
contains many flexible modes, the determination of modal significance is still

required. Suggested additional work would include developing a quantitative

definition of modal significance.

CONCLUSIONS
A modified response summation rule, MRS, has been proposed as an

alternative to the SRSS rule for combining modal responses from a Response
Spectra Modal Analysis. The MRS method reduces the cost of the analysis
because only flexible modes are required. It increases the certainty of
results by eliminating the need for selection of significant high

frequency modes and allowing for simultaneous rigid response. Comparisons

of the MRS method and the SRSS method with time history response show that the
MRS method is, in general, more reliable than the SRSS method.
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APPENDIX I1.- NOTATION
7{ :The following symbols are used in this paper:

coefficifent of a Fourier series;

time dependent base displacement;

arbitrary constant acceleration;

spring stiffness;

generalized spring stiffness;

mass;

generalized mass;

modified response summation;

time dependent generalized relative displacement;
response quantity;

square root sum of squares response summation;
time;

time dependent relative displacement;

zero period acceleration of response spectra;
modal participation factor;

phase angle of a Fourier series;

mode shape eigenvector;

radian frequency;

twice differentiated with respect to time;
column vector;

matrix;

diagonal matrix;

matrix dimensions.
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Subscripts
d = dynamic portion of a response;

f = flexible quantity (natural frequency below the cut-off frequency);

i = counting index;
J = number of rigfd modes;
n = total number of degrees of freedom;

r = rigid quantity (natural frequency above the cut-off frequency);
s

quantity based on "rigid" formulation;

n = natural frequency;

1,2,3... = ith term of Fourier series.

Superscripts

T = matrix transpose.
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Uncertainties In Seismic Design
Of Equipment Mounted Subsystems@

By L. D. Gerdesl, and R. P. Kassawara2

IHTRODUCTION

Purpose

This paper investigates the conservatism associated with the accounting

° for uncertainties in system properties by artificial seismic response spectrum

peak broadening at intermediate steps of a properly executed series of sub-

'.structure analyses., The substructures involved are the containment building
1;§nd the large, massive Reactor Coolant System (RCS). The uncertainties

'%f éf concern are primarily those associated with the knowledge of the frequencies

- Lof the reinforced concrete containment internal structure. The focus of this

RS

o paper is on the effects that this process of peak broadening has on light,

uncoupled equipment attached to the RCS. The effects of intermediate peak

broadening are compared to those of performing a single coupled model

* " analysis of the building - RCS and then broadening peaks at the conclusion
"~ of the analysis. Comparisons are also made to the procedure of actually

: varying the parameters of the building model to account for uncertainties without

broadening peaks at all. It is shown that the latter two procedures are reasonable

methods for accounting for uncertainties in building response and that they

yield similar results while the procedure of intermediate peak broadening can

"+ be unreasonably conservative and, in some instances, unconservative.

2Fror presentation at the ASCE Specialty Conference: Civil Engineering

B and Huclear Power, Knoxville, Tennessee, September, 1980.

1Principal Engineer, Nuclear Power Systems, Combustion Engineering, Inc.

" Windsor, Connecticut.
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